

Changes of climate hazards in the Lake Victoria basin

Jonas Van de Walle, W. Thiery, R. Brogli, O. Brousse, M. Demuzere and N.PM van Lipzig

Climate hazards in the Lake Victoria region

Uganda – 8 Dead After More Floods in Kasese

22 MAY, 2020 BY FLOODLIST NEWS IN AFRICA, NEWS

At least 8 people have died in flash floods in the Western Region of Uganda.

Third body of Kasese mudslide victims recovered

Home \ Regional \ Storm leaves over 2,000 households in hail

Storm leaves over 2,000 households in hail

By Deusdedit Ruhangariyo Added 22nd February 2018 01:49 PM

WEATHER | CATASTROPHIES

MBARARA - Over 2,000 households in Bukiro sub-county, Kashaari county in Mbarara district were left in disarray after a sporadic storm that broke the short January dry spell recently.

KCCA develops master plan to curb city flooding

Uganda party boat capsizes on Lake Victoria, killing 29

4 killed in fresh landslides in eastern Uganda

Many feared dead after Tuesday's heavy rains cause floods, landslides in Bududa district

Hamza Kyeyune | 04.12.2019

CNN World

From Errol Barnett, CNN

(1) Updated 1448 GMT (2248 HKT) January 17,

Photos: Life on Africa's biggest lake

Lake Victoria - But fishermen are often at risk because the lake's erratic weather conditions cause frequent accidents.

⊚ =

incident. The land

Goals

What are "climate extremes"?

How do these extremes change in a warming climate?

What are atmospheric conditions preceding these extremes?

Goals

What are "climate extremes"?

Extreme Value Analysis(fitting Generalized Pareto Distribution)

How do these extremes change in a warming climate?

CCLM Surrogate climate projections(ERA5 + CMIP6 ensemble perturbation)

What are atmospheric conditions preceding these extremes?

Climate extreme composites

Simulation set-up

PD & EoC	
COSMO-CLM 5.0, 'tropical set-up'	
Convection-permitting resolution (2.8 km)	
FLake coupled, Two-Moment microphysics scheme activated	

Present-Day (PD)	End-of-century (EoC)
(2005) 2006-2016	(2080) 2081-2091
ERA5	ERA5 + ΔCMIP6 SSP5 8.5 (2070/2100 - 1995/2025)

Surrogate climate projections

CMIP6 model ensemble at daily temporal resolution for PD and EoC.

- 3D variables: ps, tas, uas, vas, huss at surface
- 4D variables: zg, ta, ua, va, hus at pressure levels

ΔCMIP6 fields at hourly temporal resolution, spatially matching ERA5 grid.

- 4D variables: p, ta, ua, va, hus at ERA5 model levels

Surrogate climate projections

CMIP6 model ensemble at daily temporal resolution for PD and EoC.

- 3D variables: ps, tas, uas, vas, huss at surface
- 4D variables: zg, ta, ua, va, hus at pressure levels
 - (1995-2025) and (2070-2100) averages --> annual cycle
 - Ensemble means for PD and EoC
 - Smoothing: temporal (3 main Fourrier components) and spatial (Gaussian filter)
 - Climate signal Δ=EoC-PD
 - Horizontal (bilinear/conservative) and vertical (linear) interpolation of Δ to ERA5 grid
 - Linear interpolation over time (daily --> hourly resolution)

ΔCMIP6 fields at hourly temporal resolution, spatially matching ERA5 grid.

- 4D variables: p, ta, ua, va, hus at ERA5 model levels

Mean and extreme precipitation

Fig.1. Mean precipitation for both PD and EoC runs and the relative difference. Number of extreme rainfall events (pr>50 mm/h) and the relative change.

Atmospheric conditions around extreme composite?

Fig.3. Atmospheric condition anomalies before and after a composite of extreme over-lake rainfall events (pr>75mm/h). The orange bands represent the 75, 85 and 95 percentiles of all (non-extreme) conditions.

Do pre-storm conditions determine storm intensity?

Fig.4. Atmospheric condition anomalies 1, 2 or 3 hours before a composite of extreme over-lake rainfall events of different intensities, for both present-day (PD) and end-of-century (EoC) runs.

Multivariate view on extreme conditions (1)

Fig.5. Combined atmospheric condition anomalies required to produce extreme over-lake rainfall event (pr>75 mm/h) in PD, EoC and the difference, given by grey and green contours. Black contours and blue-red colors in the difference plot represent all (non-extreme) conditions.

Multivariate view on extreme conditions (2)

Fig.6. Same as Fig.5 but for over-land extreme wind gusts.

Conclusion

Weather hazards affect the Lake Victoria region

Total over-lake precipitations will decrease, but extremes occur more often and intensify

High-CAPE

Low-CIN
 High moisture content
 High moisture flux convergence

are required to produce intense rainfall

CAPE and moisture content will increase in future

A multivariate approach is necessary to explain future changes in extremes.

Thank you! Questions?

jonas.vandewalle@kuleuven.be

