

Evaluation and understanding of atmospheric conditions over the Totten region (Wilkes Land, Antarctica) from a 5 km resolution COSMO-CLM² simulation

COSMO-CLM Online General Assembly 2020

Samuel Helsen (1), Sam Vanden Broucke (1), Nicole van Lipzig (1), Niels souverijns (1,2), Alexandra Gossart (1,3)

- 1. Department of Earth and environmental Sciences, KU Leuven, Belgium
 - 2. Flemish Institute for Technological Research (VITO), Belgium
 - 3. Victoria University of Wellington, New Zealand

Content

- Why studying Totten?
- CCLM² setup and model domain
- Evaluation of surface climatology for 1987
- Outlook for the future

The Antarctic Ice Sheet has been losing mass...

Totten glacier is losing mass...

Schroder et al. 2019

Totten glacier is losing mass...

Mass loss and retreat related to high basal melt rates

High basal melt due to intrusions of mCDW under ice shelf cavities

Rintoul et al. 2016

Why studying the Totten Glacier?

- Potential SLR of ~ 3.5 meters!
- Highly dynamic and losing mass
- Importance of atmosphere-ocean-ice shelf interactions
- A lot known already about ocean-ice interaction
- Little known about atmosphere-ice interaction

NASA

Modelling the AIS using COSMO-CLM²

- Regional Climate Models (e.g. RACMO, MAR,...)
 - Higher resolution -- > more **small-scale processes** resolved
 - Adaptation of physics to represent Antarctic climate
- COSMO-CLM adapted by coupling to Community Land Model (COSMO-CLM²) by Souverijns et al. (2019) to get state-of-the-art representation of AIS climate
 - Snowpack of several layers with hydrology, snow compaction and heat fluxes
 - Improvement of perennial snow representation (Van Kampenhout 2017)
 - Adaptations to boundary layer and cloud microphysics parameterization

Model configuration over Totten + methods

- Nested in AW run driven by ERA-INT
- 60 vertical levels
- Domain of 250-350 pixels at 5 km resolution
- 2 moment microphysics scheme for precipitation
- Daily and monthly model output compared with AWS data for 1987 Temperature and wind speed/direction
- Comparison with ERA5 reanalysis

also precipitation/MSLP

• Study of important processes in this region

Model domain and AWS used for evaluation

Evaluation of surface climatology

Evaluation of surface climatology

Daily wind distributions

Evaluation of surface climatology

Е

W

S

10/

S

Comparison with ERA5 reanalysis

Left: ERA 5

Right: CCLM

Comparison with ERA5 reanalysis

Jun

Nov

60°5

70°S

120°E

Apr

10.0

- 7.5

- 5.0

- -5.0 - -7.5

KU LEUVEN

-10.0

Precipitation regime over Totten region

MSLP regime over Totten region

Sep

Jun 120°E 60°S

70°

Oct

70°S

60°S

70°S

60°S

70°S

Mar

Jul

Nov

120°E

120°E

Apr

120°E

120°E

60°S

Dec

Wind regime over Totten region

60°S

70°S

60°5

70°S

70°S

Wind regime over Totten region

Overall good performance of CCLM² for temperature and wind speed/direction

Precipitation patterns are well represented, except orographic overestimation near Law Dome ice rise

Precipitation regime is dominantly **ESE**, driven by synoptic patterns of low pressure over the ocean

Katabatic wind regime with strong E-S winds during the winter period

Outlook for the future

Performing a 10-30y run in this configuration

Coupling CCLM2 to NEMO and BISICLES via OASIS

Investigation of decadal climate variability and predictability in this region

PARAMOUR

Decadal Predictability and vAriability of polar climate: the Role of AtMosphere- Ocean-cryosphere mUltiscale inteRactions

More info? samuel.helsen@kuleuven.be

https://twitter.com/SamuelHelsen