Biogeophysical impacts of re/afforestation in Europe: First results from the LUCAS Regional Climate Model intercomparison

E.L. Davin, D. Rechid, M. Breil, R.M. Cardoso, E. Coppola, P.
Hoffman, E. Katragkou, N. de Noblet-Ducoudré, K. Radktke, M.
Raffa, P.M.M. Soares, G. Sofiadis, S. Strada, G. Strandberg, M.
H. Tölle, K. Warrach-Sagi and other LUCAS participants

LUCAS FPS

he Technische Hochschule Zürich

- Flagship Pilot Study endorsed by the CORDEX consortium
- Aim: include Land Use Change (LUC) forcing in Regional Climate Models (RCM) and understand its impact at the regional scale
- ~20 participating institutions with ~13 RCMs

Coordination:

Diana Rechid, GERICS Nathalie de Noblet-Ducoudré, LSCE/IPSL Eleni Katragkou, AUTH Edouard Davin, ETH Zurich

LUCAS Science Questions

- How sensitive are RCMs to LUC and how does this sensitivity varies across a range of models?
- How large is the contribution of LUC to past and future climate trends?
- What is the role of spatial resolution when quantifying LUC-induced impacts?
- Which land use choices are most influential at the regional scale?
- ...and many more

LUCAS strategy

Phase 1: Idealized experiments

- Europe, 50km resolution
- "GRASS" and "FOREST" experiments

Phase 2: Realistic experiments

- Continental scale, ~25 km resolution
- Historical LUC forcing and future LUC SSP forcing?
- Phase 3: High resolution experiments
 - Sub-continental scale, <5km resolution
 - Pilot domains identified in FPS on Convective phenomena?

LUCAS strategy

Phase 1: Idealized experiments

- Europe, 50km resolution
- "GRASS" and "FOREST" experiments

Phase 2: Realistic experiments

- Continental scale, ~25 km resolution
- Historical LUC forcing and future LUC SSP forcing?

Phase 3: High resolution experiments

- Sub-continental scale, <5km resolution
- Pilot domains identified in FPS on Convective phenomena?

Phase 1

Experiment name	Tier	Description	LUC forcing	Global forcing	Domain	Reso- lution	Time period	
"FOREST" (maximised forest cover)	1	Reanalysis- driven run with maximized forest cover (according to potential vegetation)	Static map of potential vegetation (break down forest types)	ERA- Interim	EURO- CORDEX	0.44°	1986-2015 (analysis period) <i>individual</i> <i>model spin up</i> <i>e.g. 1979-1985</i>	
GRASS (no forest, only grasses)	est, asses) 1 Reanalysis- driven run without forest (maximum deforestation scenario)		Grassland only static map (break down C3/C4 grasses)	ERA- Interim	EURO- CORDEX	0.44°	1986-2015 (analysis period) <i>model spin up</i>	

Vegetation maps

- Start with MODIS-based land cover map at 0.5 degree resolution (Lawrence and Chase, 2007)
- Rescale forest PFTs so that they occupy the non-bare soil area in all grid cells, i.e. forest PFTs+bare soil = 100%
- Conserve ratio between different forest PFTs. If no trees are present in a given grid cell that has less than 100% bare soil, take the zonal mean forest composition as a representative value before scaling it.

- The "FOREST" map represents a theoretical maximum of forest coverage if trees were allowed to occupy all of the land area, excluding warm and cold deserts where they cannot realistically grow
- In the "GRASS" map all forest PFTs are replaced by grassland (C3/C4 ratio conserved)

Winter response is dominated by the radiative effect of forest (albedo decrease) which is consistent across RCMs

- ✓ Disagreement in summer is linked with discrepancies in ET response
- ✓ Decrease in Tmin and increase in Tmax for all RCMs except RCA and CCLM-TERRA

 Cluster analysis indicates that the temperature response is driven by land more than by atmospheric processes (i.e. more similarity between RCMs sharing the same land model)

 \checkmark The opposite is true for precipitation

								-	-						_	
CCLM-TERRA	RCA4	WRFIDL	WRFUHOH	RegCM-CLM4.5	CLM-VEG3D	WRF-CLM	LM-CLM4.0		LM-CLM4.5	WRFUHOH —	WRFIDL	WRF-CLM RegCM-C		CLM-VEG3D		
				T2m	D			LM-CLM4.5				Precipitatio	oitation	ŭ	-M-CLM4.0	M CT MA K
							CCI	CCI							cc	

- ✓ Multi-linear regression analysis indicates that inter-model differences (in the response to re/afforestation) can be attributed partly to albedo in winter and to evaporative fraction in summer
- \checkmark But depends strongly on region and season
- ✓ Atmospheric feedbacks play a larger role in winter

Conclusions and outlook

- These results show how important but also how challenging (e.g. large uncertainties) it is to include LUC as a standard forcing in RCM simulations
- Open questions: what is causing the spread in ET response?; discrepancy between T2m and skin temperature...

- Future analysis of Phase 1 experiments: diurnal cycle, extremes, coupling strength, relation between model biases/sensitivities, observational constraints, and more...
- Design of Phase 2/3 will be discussed at the upcoming LUCAS workshop